
7
A-A±8± 786 INTEGRATED INFORMATION SUPPORT SYSTEM (I ISS) VOLUME 5 1/1

COMMON DATA MODEL S..(U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU..

WELASIFIED T LOOMIS ET AL. 1. NOV 5 PRM-620141290 F/O 12/5 NL

El

13.8

liui 1.1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

_q W WW -Am .w aw .. .

-D-A181 706
OTIC FILE COP',

AFWAL-TR-86-4006
Volume V
Part 8

S EECTEK
JUN 2 6 WD87

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 8 - NDML Programmer's Reference Manual

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

MATER IALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB. OH 45433-6533

.87 6 24 008LM _

NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated. turnished. or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture. use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repor has been .reviewed and is approved for publication.

/ 9

DA ID L /ID ONI PROJECT MANAGER DATE

"IGHT PATTERSON AFB OH 45433

FOR THE COMMANDER:

.oi EAALD C. SHUMAKER, BRANCH CHIEF DATE
AFWAL./ML TC
WRIGHT PATTERSON AFB OH 45433

'if your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W.PAFB, OH
45433 to help us maintain a current mailing list.-

Copies of this report should not be returned unless return is required by security cnnirlar-oi~nm
contractual obligations, or notice on a specific document

I M3 -----

REPORT DOCUMLN1ATION PAGE

Uncssf leG
11I SCaWMIT CI.aM9,0CA?,o. £uT010111TV 3 *IStI6WYOT60l.VAs16A8ISYY Of IPORT

3b OICIASaaaeCATIe..,OW..ras. sRDfGC14604,1A Approved for public release;

d. P900sksolft.c loatsauza. Ialporni uINWS6 S. MOftefflftkO OrnGAt.,ZhTS@ WIon? "ustsAit)

ArVAL-Y-86-4006 Vol V.* Part S,

a&5 %&ta of P68kooftwob Orn&.Atew L OfflCE SYMSOC16 Ia& %&A& Of 0110ItO01atiGt VAGNAW&7,

Geneal Xectic Cm~yAFIAL/KLTC

O* S.. ta £0055 qa. som a SIP Cuw) 1b. £955555S fCi.. Saw aw SIP Cams

a Rive Read PAPB. OH 45433-6533
Sohenootady. NY 12545

16*1410 SAM @* PUtolfamGpo..5s 6 ING Oact I'VMOAO S. PROCalftallNT #^ST~wauul' ~sOpatsPsC~A?iOf ftwA55111

Air force Systems Commnsd. vsAr AFVALfELYC 7 F6I15.SC-5155

da A9001621 #Cl. ,.5u me SIP Cws I $*l0 e SUCOW FWDING 506S

Wrigbt-Pattrsoman £73 Oho 45433 -L6TM. IN.410#1o
______________________________ f oar 7500 62 01

(See Reverse)
61350"A4l. AUTWOMIS)

Loafis.T. Loomis.K. Althoff.J. ApioellaK.

136, TYPS OP KIPORT 1-%3-T6ME COVINA -5 14. DAYI Of R5905? (yr.. so.. ftyj . P&G& COWNT
fumla 1*caica Repot 52 sept 30110 - al day IT$I 1985 Novem.DSW 65

IS. SVPPa.SMlhTASWS@IAIONi The coaputtr software contained herein are theoretical and/or

IC~rfeene Ptojet Ironty so way reflect Air roroe-ovned or -developed

17 COSAT' COO9S 14.5USd Cl Tanta tCaaia w rr Ife"aftw e.admefs if -, aGemb

1505 09051

'The Common Data Model Processor (CDMP) is a mechanism by which
application programs can retrieve and update data without knowing
where or how the data are stored. An application program poses
requests to the CDMP, which processes those requests against the
databases in which the relevant data are stored and then returns
the results to the application program. The Neutral Data
Definition Language (NDDL) Is the means for posing requests to the
CDMP. This manual explains the syntax and semantics of each NDML

30 e~~a~tI5iV~a.Ai~tvOP AMSAC? * LSYACT SiC60aTT C&ASUPCATIOh

$.C6A~tPOS~fUSLIMaS9 BsMe AS OPT. C TIC ,aaml D Unclazzif led

13. SAME OP R0900415 1ODW ISUA4. t" 7.E0"Ofid swullseU 231 *pfaCsIVA0

L i .--- so 1 B-355-?6ISL2-

DO FORM U4738 APR IRD1at ~of Ii£&ANSOa OSI. OuclaUssf led

rn~~urna ~ ~ 00 T14116ta~E~ ea P5GI

11. Title

Integrated Information Support System (ZISS)
VolI V - Common Data Model Subsystem
Part 8 - NDhiL Progr ame r' Referenoe Manual

A S D 86 1478
17 Jul 1986

r NPC

7

PRM620141200

1 November 1985

PREFACE

This programmer's reference manual covers the work
performed under Air Force Contract F33615-80-C-5155 (ICAN
Project 6201). This contract is sponsored by the Materials
Laboratory, Air Force Systems Command, Vright-Patterson Air
Force Base, Ohio. It was administered under the technical
direction of Mr. Gerald C. Shumaker, ICAM Program Manager,
Manufacturing Technology Division. through Project Manager, Mr.
David Judson. The Prime Contractor was Production Resources
Consulting of the General Electric Company, Schenectady, New
York, under the direction of Mr. Alan Rubenstein. The Gene-al
Electric Project Manager was Mr. Myron Hurlbut of Industrial
Automation Systems Department, Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models.

iii

PEM20141200
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (ITRI)

and information models of
small and modium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and Information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TZST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BNAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) Implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CD
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

0 NO. Wv' Xd _

PRM620141200
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(EcAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack U Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTH) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BRAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

V

PRM5620141200
1 November 1985

Contractors ICAM ProJeot Contributing Activities

Control Data 1502. 1701 1155 enhancements to
Corporation (CDC) Common Data Model

Processor (CDNP).

D. Appleton Company 1502 IISS enhancements to
(DACOII) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (JIAC)

Structural Dynamics 1502. 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UX/VTZ).

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

PRM620141200
1 November 1985

TABLE OF CONTENTS

Paige

SECTION 1.0 INTRODUCTION...........................1-1

SECTION 2.0 SYSTEM OVERVIEW........................ 2-1

SECTION 3.0 ML.COMMANDS 3-1
3.1 i OMRerleval Command. 3-2
3.2 ,.mDELETZ.. mand..... 3-14
3.3 CoiaNn....................... 3-16
3.4 IF~ma~...........3-20
3.5 Transaction C_ nds 3-23
3.5.1 Begin3 2 1saction Command 3-23
3.5.2 Undt and Rollback Commands 3-23
3.5.3 -'COMMIT Command 3-23
3.6 Embedding NDML in COBL.............3-24
3.7 'Embedding NDML in FORTRAN 3-25
3.8 Loop Construct/ 3-26
3.8.1 When a Loop-onstruct Is Needed.. 3-26
3.8.2 Nu5er and Type of Data Fields ... 3-26
3.8.3 Syntax 3-27
3.8.4 NDML Loop Control Statements 3-27
3.8.5 Evaluation 3-27

SECTION 4.0 NDML PROCESSING 4-1
4.1 IISS Precompiler Overview 4-1
4.2 Example of Precompiling and

xecu4-ag-Apl icat ion Proces_ 4-2
4.3 $&BL Reserved Names and LATs... 4-12
4.4 .FORTRAN Reserved Names and- La"s.. 4-12

APPENDIX A BNF OF THE NDML A-1
A.1 Conventions A-1
A.2 NDMI, Backus-Normal Form (BHF) .. A-2

APPENDIX B COBOL EXAMPLE PROGRAM B-1

APPENDIX C FORTRAN EXAMPLE PROGRAM C-1

APPENDIX D REFERENCES D-1

vii

4 'Jj*

PRM620141200

1 November 1985

LIST OF ILLUSTRATIONS

Fifure Title Page

4-1 Execute Precompiler....................4-3

4-2 Precompiler Application Process
Responses (COBOL)......................4-4

4-3 Precompiler Application Process
Responses (FORTRAN)....................4-5

4-4 Example Output..........................4-7

4-5 Execute Precompiled Application........4-11

Viii

PRM620141200
1 November 1985

SECTION 1

INTRODUCTION

The Neutral Data Manipulation Language, hereafter NDML,
was developed to provide access to the databases of the IISS
Testbed. The NDML allows one to work with the heterogeneous
distributed databases of the IISS Testbed as if they constituted
a single relational database.

It has been designed to provide as much functionality as
possible while attempting to be logical in application and
convenient. The NDML is intended to be used by both data
processing professionals and by manufacturing personnel who have
little knowledge of database systems.

The NDML is a language similar to SQL (Sequel) and Quel,
two well-known languages used to access relational databases.
The utility of the method of access provided by the NDML is
supported by extensive theory and practical tests of these
relational languages.

The NDML is designed for use either as a stand-alone
language or as embedded statements in the host languages of
COBOL or FORTRAN. Currently, only embedded statements are
supported and this manual applies only to embedded NDML. The
NDML examples in the command descriptions of this manual neglect
the embedding characters (** for COBOL or C# for FORTRAN) for
simplicity, but their use is shown in succeeding sections.

When stand-alone requests are supported, deviations from
the embedded language will be as few as possible. The
differences are due mainly to the requirement that a retrieved
table be presented to host programs a row at a time, while the
entire table can be presented in response to a stand-alone
request from an interactive user.

The IISS Precompiler should process the application program
containing embedded NDML statements before the host language
(COBOL or FORTRAN) compiler is used. The host language compiler
can be used first to debug host language statements, but the
NDML precompile step must precede host-language compilation
before executable object code is produced. The use of the
Precompiler is described under "NDML Processing" in Section 4.

The important property of the NDML to keep in mind when

1-N

PRM620141200
1 November 1985

using this manual is that the user perceives all *data" to be in
the form of tables. Data within the database can be considered
to be stored as tables even if containing only one row of
values. Similarily, only tables can be retrieved from the
database, even if the table consists of a single "row" with a
single "column" (i.e., only a single value). This important
property of relational databases allows the output of one
retrieval command to be utilized as the input to another
operation without worrying about the structure of A'e data.
Furthermore, "chunks" of data can be retrieved and used without
having to specify the structure of the data for each application
and the size of the data chunk.

Tables are usually called *relations" and the terms table
and relation will be used synonymously here. Similarly, rows of
the table may be called "records" or "tuples" and columns may be
called "data fields". "data items" or "attributes". An
individual number or character string entry in the table will be
called a "value".

Each of the folloving sections on specific commands begins
with the syntax of the command. The syntax is presented using a
method that is described at the beginning of Section 3; it is
similar to the method used in the NDDL manual. The rigorous BNF
description of the language is presented in an appendix.
Following the syntax of the command, semantic notes point out
conflicting commands and restrictions that are not supported by
the system. These sections should provide sufficient
information for the professional user to begin work. Moreover,
the new user will find them an appropriate reference in the
future when he or she has become familiar with NDML.

New users unfamiliar with SQL will want to consult
tutorials and references on that language before using this
guide.

References include:

Chamberlin, D.D. et. al., "Sequel 2: A Unified Approach to
Data Definition, Manipulation, and Control," IBM Journal
of Research and Development. Vol 20, No. 6, Nov. 1976, pp.
560-575.

Date, C.J., A Guide to DE2. Addison-Wesley Publ. Co.,
1984.

In addition, many commercial relational database systems

1-2

PRM620 141200
1 November 1985

offer SQL-like interface languages. The manuals for these
languages are useful for becoming acquainted with the general

* syntax of SQL.

1-:3

PRM620141200
1 November 1985

SECTION 2

SYSTEM OVERVIEW

The processing system is known as the Common Data Model
Processor(CDMP). The CDMP provides the application programmer
with important capabilities to:

* Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent of
the data manipulation language (DML) of any particular
data base management system.

" Request database access using a NDML that specifies
accesses to a set of related records, rather than to
individual records (i.e., using a relational DML).

* Request access to data that are distributed across
multiple databases with a single NDML command, with
minimum knowledge of data locations or distribution
details.

Information about external schemas, the conceptual schema
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDM is
a relational database of metadata pertaining to IISS. It is
described by the CDM1 information model using IDEF1. The
Precompiler parses the application program source code,
identifying NDML commands. It applies external-schema to
conceptual-schema and conceptual-schema to internal-schema
transforms on the NDML command, thereby decomosing the NDML
command into internal-schema, single atabase requests. These
single database requests are each transformed into generic data
manipulation language (DML) commands. Programs are generated
from the generic DML commands which can access the specific
databases to accomplish the request. These programs, referred
to as Request Processors (RP), are stored at the appropriate
host machines. The NDML commands in the application source
program are replaced by host-language code which, when executed,
activates the run-time request evaluation processes associated
with the particular NDML command.

The Precompiler also generates a CS/ES Transformer program
which will take the final results of the request, stored in a
file as a table with external-schema structure, and convert the
data values into the correct form for presentation. The CS/ES

2-1

PRN620141200
1 November 1985

Transformer also performs NDNL function operations on the data.

Finally, the Precompiler generates a Join Query Graph and
Result Field Table which are used by the Distributed Request
Supervisor (DRS) during the run-time evaluation of the NDIIL
request.

The DRS is responsible for coordination of the run-time
activity associated with the evaluation of an NDML command. It
is activiated by the application program, which sends it the
names and locations of the query processors to activate along
with run-time parameters which are to be sent to them. The
results generated by the query processors are stored as files in
the form of conceptual-schema relations on the host which
executed the query process. Using the Join Query Graph,
transmission cost information and data about intermediate
results, the DRS determines the optimal strategy for combining
the intermediate results of the NDNL command. It issues the
appropriate file transfer request, activates aggregators to
perform unions, joins, and NOT IN SET operations, and activates
the appropriate CS/ES Transformer program to transform the final
results. Finally, the DRS notifies the application program that
the request is completed, and sends it the name of the file
which contains the results of the request.

The Aggregator is activated by the DRS. An instance of the
Aggregator is executed for each union, Join, and NOT IN SET
operation performed. It is passed information describing the
operation to be performed and the file names containing the
operands of the operation. The DRS ensures that these files
already exist on the host which is executing the particular
Aggregator program. The Aggregator performs the requested
operation and stores the results in a file whose name was
specified by the DRS.

2-2

PRM620141200
1 November 1985

SECTION 3

NDML COMMANDS

The following conventions are used in the description of

the NDML commands at the beginning of the following sections.

Notation

UPPER CASE WORDS denote keywords in the command

LOWER CASE WORDS denote user-defined words (entered in
upper case)

I) denotes that exactly one of the options within the
braces must be selected by the user

...denotes repetition of the last element

I I denotes that the entry within the brackets is
optional

I denotes an "or" relationship among the entries

denotes default option

Punctuation

The only punctuation allowed is:

(1) a "." to separate the table-label (.e., table
alias) from the column-name. The table-label is
used to match a column to a specific table in the
list of tables referenced in the FROM clause,

(2) a ":" before the name of a host-language program
variable, structure or file name that will receive
returned values,

(3) a "," between entries in the list of tables in a
FROM clause,

(4) a "," between subscripts to an array variable,
(5) a set of parentheses to enclose the column-list in

an INSERT statement,
(6) a set of parentheses to enclose the object column

of a function,
(7) a set of parentheses to enclose the values to be

3-1

PRH620141200
1 November 1985

inserted in an INSERT statement,
(8) a set of parentheses to enclose a program variable

subscript list,
(9) a mandatory "" or "loop-construot" (see the

section: LOOP CONSTRUCT) at the end of the
command.

Character Case

Only upper-case letters are recognised by the NDHL
Precompi ler.

Word Length

Table labels are limited to 2 characters.

Table and column names are defined by the relational
view in use.

3.1 Data Retrieval Commands

Syntax of Command

Data are retrieved from the database using the SELECT
command. The command has the following syntax:

SELECT [WITH { EXCLUSIVE) LOCK]
{ SHARED)
{NO

(INTO { FILE 'file-name')]
(FILE ':variable-name' }
(STRUCTURE :v&riable-name)

[DISTINCT]
I[table-label] ALL)

expr-spec ...
{ :variable-name [(subscript, ...)] - expr-spec ...

FROM table-name (table-label].
[WHERE predicate-spec [AND predicate-spec ...]]
[ORDER BY column-spec [direction] ... I

I ;

{ loop-construct }

where:

file-name and variable-name are defined in the host

3-2

PRN620 141200
1 November 1985

program,

table-label is a one- or two-character name,

table-name and column-name are defined for the relational
view,

value is: a scalar variable i a quoted variable Ia number
in the host program

direction is: I ASC
I DESC
ASCENDING

I DESCENDING I

DOWN

expr-spec is: I column-specI

I IAVG I ([DISTINCT] column-spec)
I MEAN II
4[MAX

I IMIN II

C IOUNTI

column-spec is: Icolumn-name)
table-name.column-naae

Itable-label.column-name

predicate-spec is: I column-spec I- value

counse I I -Ispe I

3-3))

PRM620141200
1 November 1985

loop-construct is a list of program and (or) NDNL
statements enclosed in parentheses for the purpose of
transferring retrieved values to program variables

Comments

(a) SELECT Keyword

The SELECT command is the only command used in NDML to
retrieve data from the distributed database. This keyword must
be the first word in the command.

(b) LOCK Phrase

A lock limits access to specific rows of tables while a
transaction is being processed to prevent alteration of them
during the transaction. A look is owned by the transaction in
which the SELECT statement occurs. An EXCLUSIVE look denies
access to all rows accessed by the transaction to all other
processes. In addition, a request by any other transaction for
any type of lock on the row will be caused to wait until the
EXCLUSIVE lock is released. An EXCLUSIVE lock is normally used
only when using an update command on a row, but might be needed
in a SELECT request in a transaction to ensure that no other
transaction can obtain a lock on the row. A transaction issuing
a SELECT request may need to lock a selected row if it intends
to update the row based on values retrieved earlier.

A SHARED lock also locks rows but allows other transactions
to also lock a row. A SHARED lock is normally used in a SELECT
command to ensure that a row is not changed by a contemporary
MODIFY or DELETE transaction that must obtain an EXCLUSIVE lock
to perform its function.

If no type of lock is specified in a lock-request, a NO
lock is assumed unless the SELECT falls within an explicitly
specified transaction. For example,

BEGIN TRANS

COMMIT/UNDO;

causes a SHARED lock to be requested automatically.

The lock placed by a transaction depends on the
implementation of locks in the particular database systems of
the internal schema. The lock placed on the data in the internal

3-4

PRM620141200
1 November 1985

schema by the local database manager usually locks either (1)
only the accessed record or (2) the entire accessed table,
depending on the local database. A "LOCX TABLE" command that
will ensure that an entire table, rather than just a record, is
locked is not provided in NDNL at present. A user should assume
that only each record accessed is locked.

(c) INTO Phrase and Variable Assignments

The data retrieved by a SELECT command can be either (1)
placed into a file or program structure with the INTO phrase or
(2) assigned to program variables using a variable-assignment
construct.

The file name can be specified by using the keyword FILE
and enclosing the file name in single or double quotes. If a
colon is not the first character following the first quote, then
the literal contents of the quoted character string will be
taken to be the name of the file. If the first character
following the first quote is a colon, then the rest of the
character string will be taken to be the name of a program
variable, the contents of which is the name of the file.

If the name of the file is quoted, the user should not
supply the COBOL SELECT or FD layout for the file; the
Precompiler will generate these and the internal file name. The
file can be accessed by the application program by opening it,
reading it into a working storage area and then closing it.

If the file name is contained in a program variable, the
Precompiler will generate code to write it as an external file.
To access the file, the appropriate code must be present to read
an external file, including COBOL SELECT and FD statements.

The entire result of the SELECT will be placed in the file,
one row per record, in the order normally produced by the SELECT
command. A loop-construct should not be specified when the INTO
phrase is used to place results in a file.

A structure is indicated to receive the retrieved data by
the keyword STRUCTURE followed by a space, a colon and the
program name of the structure. The defined data types for the
fields in the structure must agree exactly with those for the
corresponding column. For a structure target, only the first
row returned will be placed in the target unless the application
program contains code for a loop-construct following the SELECT
command. The syntax of the loop-construct is described in a

3-5

* * g* *i~; ~ f if V. or

PRH620141200
1 November 1985

separate section below.

The alternative to the INTO phrase is to assign retrieved
data directly to program variables. If a variable name is

specified for a column, it is assumed that the defined data type
for the variable agrees in type exactly with the type of the
column in the external-schema view accessed by the NDKL command.

Subscripted variables can be used as variables to receive data.
Only the first row returned will be placed in the target unless
the application program contains code for a loop-construct

following the SELECT command. The syntax of the loop-construct
is described in a separate section below.

If neither a file, a structure, nor variables are specified
to receive the result of the select command in embedded NDML in

an application program, the Precompiler will reject the NDML
SELECT statement. Thus, an assignment of retrieved columns to
program variables or an INTO clause must be specified, but both
cannot be specified. Also note that if ALL is specified for

columns, an INTO phrase must be specified.

The following are examples of valid SELECT statements.

SELECT INTO FILE 'DEPT-FILE'
D.DNO D.DNAME D.DLOC D.DSIZE
FROM DEPT D
ORDER BY D.DNO;

SELECT INTO STRUCTURE :DEPT-STRUCT
D.DNO D.DNAME D.DLOC D.DSIZE
FROM DEPT D
ORDER BY D.DNO
loop-construct

SELECT :DEPTNO - D.DNO :DEPTNAKE - D.DNAME
:DEPTLOC n D.DLOC :DEPTSIZE - D.DSIZE
FROM DEPT D
WHERE D.DLOC I- 'LAX'
loop-construct

(d) SELECT DISTINCT Phrase

The DISTINCT clause on a SELECT statement is used to

specify that duplicate rows are to be removed prior to
presentation of the results. Omitting the DISTINCT clause
implies that duplicate rows are not removed.

The DISTINCT phrase refers to the entire set of selected

columns following it. For example, SELECT DISTINCT ALL FROM Tl

3-6

PRM620141200
1 November 1985

removes only those rows from TI for which all column values
are identical to those of another row in T1. The DISTINCT
processing is applied to rows in their external-schema formats.

SELECT INTO FILE 'FILE-NAME' DISTINCT ALL
FROM DEPT D
WHERE D.LOC - 'LAX';

SELECT INTO FILE 'FILE-NAME' DISTINCT
D.DNO D.DNAME D.LOC
FROM DEPT D
WHERE D.SIZE - 'LARGE';

(e) Restrictions on Column Specifications

Only columns from a table can be specified; quoted literal
data to be duplicated in a column are not allowed, but can be
Introduced easily by the application programmer. Arithmetic
expressions involving column data are also not supported; they
can also be implemented easily directly in the application
program. For example, the following commands are not supported:

SELECT INTO FILE 'FILE-NAME'
EMP ' IS IN DEPARTMENT ' EMPDEPT
FROM EMP;

SELECT INTO FILE 'FILE-NAME'
'OVERHEAD IS ' 0.5 * AMOUNT
FROM CONTRACTS;

The column specification ALL indicates all columns of the single
table specified by the rest of the SELECT statement. The table
can be derived from a single table indicated in the FROM clause,
as (optionally) qualified by a WHERE clause. Alternatively,
multiple tables can be specified in the FROM clause if a join
operation is specified in a WHERE clause to combine them into
the single table required. Finally, a specific set of columns
can be indicated by using a table-label to specify a particular
table in the FROM clause. For example, the following query is
not supported:

SELECT INTO FILE 'FILE-NAME' ALL

FROM TABLE1, TABLE2;

but the following queries are supported:

SELECT INTO FILE 'FILE-NAME' ALL

3-7

PRM620141200
1 November 1985

FROM TABLE1, TABLE2
WHERE TABLEI.CITY - TABLE2.CITY;

SELECT INTO FILE 'FILE-NAME' E. ALL
FROM EMP E, DEPT D
WHERE E.DNO - D. DNO;

An important requirement that must be observed to use the
ALL column specification is that an INTO phrase must indicate
where to place the results of the SELECT because individual
columns cannot be explicitly assigned to program variables in
this syntax. The number of data fields and data types in the
target structure or file must correspond to those of the
columns, as discussed in the section above on the INTO phrase.
The ALL specification is prone to error in embedded NDML because
the number and order of columns can change if the table is
reorganized. Note also that the ALL specification can refer to
only one table. If more than one table is specified in the FROM
clause, the appropriate table to which the ALL designation
applies must be indicated using a table-label.

(f) Statistics Functions

Function expressions can be presented as the result of a
SELECT statement only; they cannot be used in a WHERE or ORDER
BY clause. These functions are used to specify that column
statistics of AVG value, MAX value, MIN value, SUM value or
COUNT of rows are to be produced. AVG and MEAN are synonyms.

The results of AVG (column) are the same as the results of
SUM(column)/COUNT(column). All values are considered unless the
optional DISTINCT phrase within the function clause is included,
in which case duplicate values are removed prior to the function
application.

SELECT cannot return both a table and the result of
functions in a single statement. Thus, if one function is
specified in an expr-spec, then all values to be retrieved must
be the result of functions. It is permissible to retrieve the
results of several functions, but the user should be aware that
the values in the single row returned will not necessarily have
any logical relationship.

MIN, MAX and COUNT can be applied to both numeric and
string columns. AVG, MEAN and SUM can be applied only to
numeric columns. Functions are applied to columns in their
external-schema formats. Statistic functions ignore nulls in
the data. For the empty set. COUNT returns zero and other

3-8

A.

PRM620141200
1 November 1985

functions return an undefined result; the existence of the empty
set for non-COUNT functions results in a condition code set in
NDML-STATUS, as discussed below.

The ORDER BY clause should not be used when functions are
specified because unnecessary processing will be performed (the
system may not allow the clause to be specified). Specification
of function DISTINCT before MIN or MAX is ignored. Functions
cannot be used in a WHERE clause because the result of a
function is a property of a group of rows rather than of each
row. A SELECT DISTINCT specification should not be used with
functions because it causes unnecessary processing.

The formats of function results in COBOL are the following:
AVG, MEAN and SUM: S9(9)V9(9); COUNT: S9(9). The formats of
function results in FORTRAN are the following: AVG, MEAN and
SUM: F20.9; COUNT: I10. The number of rows returned by the
request is contained in the variable NDML-COUNT generated into
the application program by the Precompiler; obviously, it will
al ways have a value of one for function requests. The variable
NDML-STATUS (or NSTATS in FORTRAN) generated into the
applications program contains a code that indicates the success
or failure of the request. An all zero code indicates
successful completion; another code indicates an error. If a
function operates on an empty column, a result may be returned
that is not really valid (for example, SUM will return 0.). The
NDML-STATUS flag should be checked by the application program
before using the result returned by a function. A full list of
error codes is not available at this writing.

User-defined functions and explicit arithmetic functions
(e.g., WEIGHT * 2.2) are not supported in this release.

SELECT INTO FILE 'FILE-NAME'
AVG(P.LEAD-TIME) MIN(P.LEAD-TIME) MAX(P.LEAD-TIME)
FROM PART P
WHERE P.SIZE , 100;

SELECT INTO FILE 'FILE-NAME' COUNT(D.DNAME)
FROM DEPT D, EMP E
WHERE E.DNO - D.DNO;

SELECT INTO FILE 'FILE-NAME'
MIN(SE.SALARY) MIN(HE.RATE)
FROM SALARIED-EMP SE, HOURLY-EMP HE;

SELECT INTO FILE 'FILE-NAME' COUNT(DISTINCT E.JOB)
FROM EMP E
WHERE E.DNO 1 10;

SELECT INTO FILE 'FILE-NAME' COUNT(DISTINCT D.LOC)

3-9

PRM620141200
1 November 1985

FROM DEPT D, NEWDEPT N

WHERE D.NANE - N.DNAME;

(g) FROM Clause

Table labels or table names may or may not be required by
the syntax of the particular request. If two or more tables are
specified in the table-list, it is a good idea to be concise and
use table labels or table names to designate columns. When a
table is joined with itself, it is necessary to use table labels
to distinguish columns.

(h) WHERE Clause

The WHERE clause is used to limit the information returned
from one or more tables. If the WHERE clause is not specified,
all rows from the first table indicated in the table-list are
returned (additional table names are ignored).

Only column-predicate or join-predicate comparisons are
allowed in WHERE clauses. The column-predicate compares the
value of a column with a single specific value indicated by the
contents of a scalar program variable, a literal string in
quotes, or a number. Either the column name or value can be the
first object of the comparison (only the case in whicli the value
is second is shown in the syntax above). AND clauses can be
used to specify multiple qualifications on the table selected;
however, an "OR" capability is not implemented at this time.
The comparison operator (bool-op) includes most common
operations but does not include an "IN" comparison that would
allow a column to be compared with many values.

The absence of an "IN" bool-op and "OR" clauses restricts
the ability to specify alternative qualifications on the
selected table. In this release, multiple SELECT requests must
be issued to retrieve all the information if a column can have
more than one value of interest. The NDML command can easily be
placed within a user-defined program loop within an application
program. Consequently, subqueries, in which the comparison
values are returned by another SELECT request, are not
supported because more than one value can be returned by the
subquery. Other possible comparison operators not supported
include EXISTS, ALL and ANY.

Note that changing the contents of a program variable
within the "loop-construct" of the SELECT command will have no
effect on the result because the query has already been executed

3-10

PRM620141200

1 November 1985

before the loop-construct is activated. A loop-construct is
used only to transfer data from a completed SELECT query to
program variables or to a structure. The loop-construct is
described in detail in the section "LOOP CONSTRUCT" below.

Supported Query:

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM EMP
WHERE DTYPE - 'SALES'

AND DLOC = 'SOUTH';

Unsupported Queries:

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM DEPT
WHERE DNO IN

(SELECT DNO
FROM LOCATION
WHERE DEPTLOC = 'LA');

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM DEPT
WHERE DSIZE = 'SMALL'

OR DSIZE - 'MEDIUM';

The join-predicate comparison allows only the equijoin C-)
and NOT IN SET (!=) operations; the operators <, <=,) and =

are not implemented. The join fields compared in a join or NOT
IN SET operation need not have identical data types in the
user's (external) view of the table, except that numeric data
must be compared with numeric data and character strings with
character strings. All data will actually be compared in
conceptual-schema format.

The equijoin connects a row from each of two tables to form
one row in the result table if the values in the specified
columns in the tables are identical. Duplicate rows will be
returned if duplicate rows exist in either table. Rows for
which a match are not found are not included in the result

table.

The NOT IN SET operation is a selection procedure that
eliminates each row from the first table for which the value in
the specified column is found in any row in the specified column
in the second table. In other words, the NOT IN SET operator is
used to select all rows of a table where the value of a certain

3-11

'VI

PRM620141200
1 November 1985

column is not equal to any value in a given column in another
table. The order of the columns in the NOT IN SET predicate is
significant. For example the following two requests yield
different results:

SELECT INTO FILE 'FILE-NAME' D.DNO D.DNAME
FROM DEPT D, EMP E
WHERE D.DNO !- E.DNO;

SELECT INTO FILE 'FILE-NAME' E.DNO E.NAME
FROM DEPT D, EMP E
WHERE E.DNO !- D.DNO;

If the following data are found,

D.DNO E.DNO
1 2
2 3
4 5
5 6
7 8
8 9

the result of first example is, D.DNO
1
4
7

and the result of second example is: E.DNO
3
6
9

Some columns cannot be specified in a WHERE clause because
the columin in the conceptual schema maps to non-normalized
database ,.tructures in the internal-schema databases. In
particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The user can
determine these restrictions before precompilation only by
examining conceptual-internal schema mapping relationships.

(i) ORDER BY Clause

The ORDER by clause is used to specify the sequencing rules
for presentation of the results of a SELECT operation. Omitting
the ORDER by clause on a SELECT statement implies that the rows

3-12

PRM620141200
1 November 1985

of the result table are presented in a system-determined order.

The columns in the order-spec-list control the sorting of
result rows in major-to-minor order. If the direction phrase is
omitted for a column, then ASC (ascending) is assured. The
columns of an order-spec-list need not all have the same
accompanying direction. Also, the columns need not appear in
the column-list of the SELECT phrase.

Sorting is done on the columns in their external-schema
formats and will be done on the machine running the application
program. The order of the sorted result will depend on the
storage code used by the computer running the applications
program. Thus, the result of the same program can differ if it
is precompiled and run on different machines. Note that ASC,
ASCENDING and UP are equivalent and that DESC, DESCENDING
and DOWN are equivalent.

SELECT INTO FILE 'FILE-NAME' E.NAME E.DEPT E.PHONE
FROM EMP E
WHERE E.JOBCODE) 50
ORDER BY E.NAME;

SELECT INTO FILE 'FILE-NAME' PART* SIZE
FROM PART
ORDER BY SIZE DESCENDING;

SELECT INTO FILE 'FILE-NAME' D.DEPT# D.LOC D.CITY
FROM DEPT D
ORDER BY D.CITY ASC D.LOC DESC D.SIZE ASC;

(j) Nulls

The effect of nulls in data are not sufficiently
established at this writing to describe the result for specific
operations. Because nulls are implemented in many ways in the
internal-schema databases, it is not advisable to depend upon a
particular response of the system to null data.

(k) Grouping Clauses

This release does not support GROUP BY and HAVING clauses
to determine aggregate properties of multiple rows of a table.
These operations must be performed by the application program.

3-13

PRU620141200
1 November 1985

3.2 DELETE Command

Syntax of Command

The DELETE command removes rows from an external-schema
table. The DELETE command has the following syntax:

DELETE FROM table-name [table-label]
[USING table-name [table-label],
WHERE ALL)

predicate-spec [AND predicate-spec ...])

where:

table-label is a one- or two-character name,

table-name and column-name are defined for the relational
view,

column-spec is: { column-name)
table-name.column-name
table-label.column-name

/ / \\

predicate-spec is: I column-spec I - I value
II ! = I I

(()= I)

I I I I
I I\ (I I
I \ / I

column-spec column-spec
I\{ I II

Comments

(a) Locking

A DELETE command inside a transaction usually places a "key
lock" on deleted rows until a COMMIT command is encountered.
This lock ensures that another process cannot insert a row with
the key of the deleted row until the DELETE action has been
finalized by a COMMIT command. A DELETE command outside of a
transaction is usually committed immediately and no lock is
used. Actual lock mechanisms depend on the internal-schema
databases.

3-14

PRM620141200

1 November 1985

(b) USING Clause

The USING clause specifies tables that are accessed by the
WHERE clause to qualify the request. These tables are not to
have rows deleted from them. To be meaningful, tables indicated
in the USING clause must be related to the table on which the
DELETE command acts by a join-predicate.

(c) WHERE Clause

The WHERE clause is used to specify which rows qualify to
be deleted. The WHERE clause is mandatory and the Precompiler
will reject the request if it is not present. If all the rows
of a table are to be deleted, the WHERE ALL clause should be
used. For selective qualification of rows, the WHERE clause has
the same power of expression as it does in a SELECT statement.
Note that this release supports only the AND connector between
qualifications in a WHERE clause.

Some columns cannot be specified in a WHERE clause because
the column in the conceptual schema maps to non-normalized
database structures in the internal-schema databases. In
particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The use can determine
these restrictions before precompilation only by examining
conceptual-internal schema mapping relationships.

(d) Mapping Restrictions

The external-schema table (the table the user views) must
map to one complete conceptual-schema entity class. This means
that a request to DELETE a row in a table in the user's view can
be rejected by the system because other information that the
user is not (necessarily) aware of would also have to be deleted
in the conceptual-schema representation of the database. Thus,
it may be necessary to determine the conceptual-schema structure
and mapping to external views to formulate a correct DELETE
command to explicitly delete all the columns of a row in the
conceptual schema. In general, an effort should be made on the
part of the CDM designers and administrator to make this mapping
as simple as possible while still supporting the variety of
external views needed by users.

The entity class (in the conceptual schema) may map to just
part (or all) of one or more record types in the actual database

3-15

PRN620141200

1 November 1985

(in the internal schema). If Just part of a record type is
mapped to, that deleted part is filled will null-values and the
remainder is left as is; the designation of null values depends
on the particular database manager.

(e) Integrity Constraints

A request to delete a conceptual-schema entity that has
dependent entities will be rejected at runtime. Those dependent
entities cannot be left hanging; their existence depends on the
existence of the independent entity.

A future release may support DELETE WITH CASCADE, which
will delete any dependent entities associated with the specified
entity.

(f) Null Values

The specification of internal-schema null-values is DBMS
dependent. When the DBMS does not support nulls (as in the case
of TOTAL), all hyphens will be used in alphanumeric fields,
negative zero will be used in signed numeric fields, and zero
will be used in unsigned numeric fields.

(g) Examples:

DELETE FROM OFFER F
WHERE F.STATUS - 'EXPIRED';

DELETE FROM OFFER
WHERE ALL;

DELETE FROM OFFER F
WHERE F.STATUS - 'OLD'

AND F.DATE , :CUT-DATE
AND F.TYPE I- 'RETRO';

DELETE FROM OFFER F
USING PRODUCT PR
WHERE F.TYPE - PR.TYPE

AND PR.CLASS - 'REPLACED';

3.3 INSERT Command

Syntax of Command

The INSERT command adds rows to an external-schema table.

3-16

PRN620141200
1 November 1985

The INSERT command has the following syntax:

"'NSERT INTO table-name (column-spec ...)

VALUES I FROM FILE 'file-name') ;
{ FILE ':variable-name' ,

I (STRUCTURE :variable-name) I
I value.../I

where:

file-name and variable-name are defined in the host
program,

table-name and column-name are defined for the relational

view.

table-label is a one- or two-character name,

value is: a scalar variable I a quoted variable I a number
in the host program

column-spec is: { column-name n
(table-name.column-name)
(table-label.column-name)

Comments

(a) Locking

An INSERT command issued inside a transaction usually
places an EXCLUSIVE lock automatically (on rows or on tables,
depending on the particular internal-schema database managers)
until a COMMIT command is encountered. An INSERT command
outside of a transaction is usually committed immediately and no
lock is used.

(b) Specified Columns

The columns of the table are specified in the column-list.
Values are supplied either from an external file, in which case
many rows may be created, or from a source-list or data
structure, in which case one row is created for each set of
values. The values are related to columns in the column-list by
their respective orders of appearance. The columns in the
column-list need not be specified in the same order as the

3-17

PRM620141200
1 November 1985

columns in the external-schema table were initially described to

the system.

(c) File Input

If the values to be inserted are taken from a file, then
multiple records can be inserted. The specification of file
input causes an implicit loop to be generated that repeatedly
executes the INSERT command until the file is empty. The file
is read as string input. Each row is a record; the end of the
rows is marked by the end-of-file. There are no delimiters
between fields. It is assumed that the record format matches
the format of the column list. The file-name is a logical
file-name which should be related to a physical file through the
system's job control language. The input file must be defined
in the application program (by COBOL SELECT and FD statements).

(d) Structure Input

The format of a data structure must match the format of the
column list. It is assumed that the data type of structure
fields exactly match that of the corresponding table columns in
the external-schema format. Only one row can be inserted by
this method without explicitly placing the NDNL command within a
program loop.

(e) Value and Variable Input

A source list enclosed in parentheses can contain values
and/or program variables for input. Multiple source-lists can
be specified to cause an implicit loop to be generated that
executes the INSERT command once for each source list. The data
types of values explicitly given must agree with the data type
of target columns. In this release, values cannot be calculated
by an arithmetic expression within the INSERT statement.

(f) Napping Restrictions

The external-schema table (the table the user views) must
map to one complete conceptual-schema entity class. This means
that a request to INSERT a row in a table in the user's view can
be rejected by the system. Thus, it may be necessary to
determine the conceptual-schema structure and mapping to
external views to formulate a correct INSERT command to
explicitly insert all the columns of a row in the conceptual
schema. In general, an effort should be made on the part of the
CDM designers and administrator to make this mapping as simple

3-18

PRM620141200
I November 1985

as possible while still supporting the variety of external views
needed by users.

The entity class (conceptual schema) may map to just part
(or all) of one or more internal-schema (actual databases)
record types. If just part of a record type is sapped to, that
part not inserted is filled will null-values. Moreover, if a
record type in the internal database maps to two conceptual-
schema entity classes, inserting in one conceptual entity,
followed by the other, will result in two partial record
instances in the internal database, rather than one complete
instance; the Precompiler does not view this result as incorrect
and will not issue a rejection or warning.

(g) Integrity Constraints

A request to insert a conceptual-schema entity that is
dependent in a relation class but for which no independent
entity exists will be rejected at runtime. A dependent entity
cannot exist without its associated independent entities, one
for each relation class in which it is dependent.

A request to insert a conceptual-schema entity with key
value equal to that of an entity already in the database will be
rejected at runtime. Key values must be unique.

(h) Null Values

The specification of internal-schema null-values is DBMS
dependent. When the DBMS does not support nulls (as in the case
of TOTAL), all hyphens will be used in alphanumeric fields,
negative zero will be used in signed numeric fields, and zero
will be used in unsigned numeric fields.

() Examples:

* INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES FROM DEPT-FILE;

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR' 'BI' 'SMALL');

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR' 'Bl' 'SMALL')

3-19

PRM620141200
1 November 1985

(40 'CUST' 'F4' 'SHALL')
(36 'SW' 'G2' 'LARGE');

INSERT INTO DEPT
(DNO DUANE DLOC DSIZE)
VALUES (:DEPT-NUN :DEPT-NAME 'BI' :DEPT-SIZE);

INSERT INTO DEPT
(DUO DUAME DLOC DSIZE)
VALUES FROM STRUCTURE :DEPT-REC;

where DEPT-REC has the structure:

01 DEPT-REC.
03 DEPT-NUN PIC 99.
03 DEPT-NAME PIC X(4).
03 DEPT-LOC PIC XX.
03 DEPT-SIZE PIC X(5).

3.4 MODIFY Command

Syntax of Command

The MODIFY command changes values in an external-schema
table. The MODIFY command has the following syntax:

MODIFY table-name [table-label]
[USING table-name [table-label], ...]
SET column-spec - value ...
WHERE { ALL)

{ predicate-spec [AND predicate-spec ...])

where:

table-label is a one- or two-character name,

table-name and column-name are defined for the relational
view.

value is: a scalar variable I a quoted variable I a number
in the host program

column-spec is: c column-name }
(table-name.column-name
table-label.column-name

3-20

PRM620141200
1 November 1985

/ / \\
predicate-spec is: I column-spec I - I value I

I I != I I
I 4)) I

4 I ," I)

I I < I I
I I '- I I
i \ / 1

i column-spec { - } column-spec I

\ /

The columns to be changed and the values to be entered must
be explicitly specified in the SET clause; values cannot be read
from a structure or file.

Comments

(a) Integrity Constraints and Happing Restrictions

Three specific integrity constraints are enforced by the
system. First, the MODIFY command cannot be used to change the
values of a column that corresponds to the key class of an
entity class in the conceptual schema. Thus, some requests that
have an apparently correct syntax might be rejected. To modify
a key class, it is necessary to first DELETE and then INSERT the
entity. Second, referential integrity is enforced. If a
foreign key class is to be modified, there must exist a parent
for the new key. Third, it is not permissible to change just
part of a foreign key class; the entire foreign key must be
changed.

Some columns cannot be modified alone because the column in
the conceptual schema maps to non-normalized database structures
in the internal-schema databases. In particular, a
conceptual-schema column that maps to a data field in a
repeating group in the internal database will not have a unique
value for each row. The Precompiler should recognize this
problem and reject the NDHL request. The user can determine
these restrictions before precompilation only by examining
conceptual-internal schema mapping relationships.

(b) Locking

A MODIFY command within a transaction usually places an
EXCLUSIVE lock automatically (on rows or on tables accessed,

3-21

r *v-

PRM620141200
1 November 1985

depending on the particular internal-schema database managers)
until a COMMIT command is encountered. A MODIFY command issued
outside of a transaction usually commits the result immediately.
The specific lock used is determined by the particular
internal-schema database manager.

(c) USING Clause

The USING clause specifies tables that are accessed by the
WHERE clause to qualify the request. These tables need not
necessarily include the one that is being modified. To be
meaningful, tables indicated in the USING clause must be related
to the table on which the MODIFY command acts by a
join-predicate.

(d) SET Clause

The SET clause specifies the new values that are to be
given to values in designated columns. The new value can be
contained in a program variable or be given explicitly. In this
release, new values cannot be calculated by arithmetic
expressions in the MODIFY command, nor can they be contained in
a structure or file.

(e) WHERE Clause

The WHERE clause is mandatory. The WHERE clause is used to
specify which rows qualify to be changed. If all the rows of a
table are to be modified, then the WHERE ALL clause should be
used. For selective qualification of rows, the WHERE clause has
the same power of expression as it does in a SELECT statement.
Note that this release of the system supports only the AND
connector between phrases of a predicate. If the WHERE clause
is not included in a MODIFY statement, the Precompiler will
reject the statement and issue an error code.

Some columns cannot be specified in a WHERE clause because
the column in the conceptual schema maps to non-normalized
database structures in the internal-schema databases. In
particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The user can
determine these restrictions before precompilation only by
examining conceptual-internal schema mapping relationships.

3-22

* ". *~

PRM620141200
1 November 1985

(f) Examples:

MODIFY OFFER F
SET F.STATUS - 'EXPIRED'
WHERE F.DATE , :CUTDATE;

MODIFY OFFER F
SET F.RESPONSIBLE-DEPT - 'BENEFITS'
WHERE ALL;

MODIFY DEPT D
USING EMPLOYEE EMP
SET D.STATUS - 'INACTIVE'
WHERE D.DNO I!= EMP.DNO;

MODIFY DEPT D
SET D.STATUS - 'INACTIVE'

D.LOC - 'INACTIVE'
D.RESPONSIBLE-MNGR - :MNGR-INPUT

WHERE D.DNO = :DEPT-NO-INPUT;

3.5 Transaction Commands

3.5.1 BEGIN TRANSACTION Command

The BEGIN TRANSACTION command indicates the start of one or
a group of NDML commands that must be completed successfully as
a unit in order to maintain the integrity of the database
system. All automatic locks issued (for SELECT, INSERT, DELETE
and MODIFY commands) and an explicit EXCLUSIVE lock placed by a
SELECT command refer to this transaction. If locks exist from
prior commands for an open transaction that have not been
removed by a preceding commit-command or rollback-command, the
BEGIN TRANSACTION command will issue a rollback-command to undo
any uncommitted previous commands.

A transaction ends at the next UNDO, ROLLBACK or COMMIT
statement. Transactions cannot be nested.

3.5.2 UNDO and ROLLBACK Commands

These NDML commands cause the system to undo any actions
accomplished since the last BEGIN TRANSACTION command. The
databases will be returned to their previous states.

3.5.3 COMMIT Command

The COMMIT command causes all actions accomplished since

3-23

..............

PRM620141200
1 November 1985

the last BEGIN TRANSACTION command to become permanent and all
existing locks on records for this transaction to be removed.
The following is an example use of the COMMIT command:

*4 BEGIN TRANSACTION;
*4 MODIFY OFFER F
** SET F.RESPONSIBLE-DEPT - 'BENEFITS'
*4 WHERE ALL;

IF NDML-STATUS - 'ERROR'
*4 ROLLBACK;

ELSE
*# COMMIT;

3.6 Embeddinf NDML in COBOL

COBOL compilers do not know the meaning of the NDML
commands. Therefore, a COBOL application program that contains
NDML statements must be precompiled by the IISS Precompiler. The
Precompiler substitutes in-line COBOL code into the application
program in place of the NDML statements. The substituted code
provides the mechanisms necessary to send messages to the
Distributed Request Supervisor, make the contents of program
variables available to the system, open and read returned files,
etc.

In order to allow the Precompiler to distinguish the NDML
statements from COBOL statements, each line of NDML code must
contain a "**" in columns 7 and 8; the rest of the NDML
statement must begin in column 12 or greater. All NDML lines
will look like comment lines to the COBOL compiler and the COBOL
compiler can be used to test COBOL code before precompilation,
with two exceptions, without removing the NDML statements. One
exception is that a "." may be needed within a loop construct
after a BREAK, EXIT, NEXT or CONTINUE statement that may not
make sense to the COBOL compiler before the program has been
precompiled; this results in a simple error message that can be
ignored. The second exception is that any references to the
variables NDML-COUNT or NDML-STATUS will result in a compile
error because these variables are generated into the program by
the Precompiler. Examples are foad in the Appendix.

The following procedure is recommended for programming an
application program containing embedded NDML.

1. Compile the program with the COBOL or FORTRAN compiler
using explicit test values for program variables that
will be retrieved by NDML commands. Locate and fix all

3-24

PRM620141200
1 November 1985

COBOL syntax and processing errors.

2. Precompile the program to identify all syntax errors in
the NDML; fix all errors.

3. Compile the output of the Precompiler with the COBOL
compiler and perform a number of link and install steps
as described in PART II of this manual. Be sure to
test the resulting program before routine use.

3.7 Embedding NDNL in FORTRAN

FORTRAN compilers do not know the meaning of the NDML
commands. Therefore, a FORTRAN application program that
contains NDML statements must be precompiled by the IISS
Precompiler. The Precompiler substitutes in-line code FORTRAN
into the application program in place of the NDML statements.
The subroutines provide the mechanisms necessary to send
messages to the Distributed Request Supervisor, make the
contents of program variables available to the system, open and
read returned files, etc.

In order to allow the Precompiler to distinguish the NDML
statements from FORTRAN statements, each line of NDML code must
contain a "C$" in the first two columns; the rest of the NDML
statement must begin in column 7 or greater. All NDML lines
will look like comment lines to the FORTRAN compiler and the
FORTRAN compiler can be used to test FORTRAN code, with one
exception, without removing the NDML statements. The exception
is that any references to NCOUNT or NSTATS (the equivalent of
NDML-COUNT AND NDML-STATUS in COBOL) variables in the FORTRAN
program will result in an error because these variables are
generated into the program by the Precompiler.

The following procedure is recommended for programming an
application program containing embedded NDML.

1. Compile the program with the FORTRAN compiler using
explicit test values for program variables that will be
retrieved by NDML commands. Locate and fix all FORTRAN
syntax and processing errors.

2. Precompile the program to identify all syntax errors in
the NDML; fix all errors.

3. Compile the output of the Precompiler with the FORTRAN
compiler and perform a number of link and install steps

3-25

Law

PRM620141200
1 November 1985

as described in PART II of this manual. Test the

resulting object code.

3.8 Loop Construct

3.8.1 When a Loop Construct Is Needed

The host language compiler expects that all input and
output in an application program be done a record at a time. In
contrast, a single NDNL SELECT command can return many records.
The loop construct is provided to allow NDNL to interact with
the application program one record at a time.

A loop construct is necessary for assignment of multiple
returned values to program variables or to a structure, even if
the variables or structure fields are vectors. The major reason
that implicit looping is not generated is that there is no way
to determine the number of records to be returned during the
precompile step; therefore, the programmer should test the
number of records returned within an NDNL loop construct to
ensure that storage dimensions of the variables are not exceeded
during execution.

It is not necessary to use a loop construct if only the
first record returned is to be used. For example, a loop
construct will never be necessary when functions are specified
in a SELECT because only one row is returned. Specification is
used because looping is implicit (the file is assumed to be
capable of growing to hold all output).

Note that the loop executes after the SELECT retrieval is
complete. Therefore, changing values in the WHERE or ORDER BY
clauses within the loop will have no affect on the result.

3.8.2 Number and Type of Data Fields

The programmer must take care to specify the program
variables or file names that are to receive the values returned
by the SELECT statement. Note that the command

SELECT ALL
.... °.............

Is especially risky because the number of the retrieved columns
is not explicit and their assignment to data fields in a
structure or to a file is susceptible to error (i.e., assignment
to individual program variables is syntactically not possible).

3-26

PRM620141200
I November 1985

3.8.3 Syntax

A loop must immediately follow a SELECT command. If a loop
construct follows, do not end the SELECT command with a ";"; the
end of the NDML procedure is indicated by the closing bracket.
The start of the loop is indicated by "{" and the end by ")"
both of which are embedded NDML statements and must be preceded
on the line in the application program by appropriate NDHL
designation characters. The body of the loop can contain both
host-language statements and embedded NDEL commands.

It is permissible to include NDML statements within loop
constructs for a SELECT statement. A transaction defined by a
BEGIN TRANSACTION statement must either enclose the entire
SELECT statement and associated loop construct or must be
contained within the loop construct. An example of the latter
is given below.

Two important restrictions on the use of loop constructs
are the following. Programmers should not attempt to exit a
loop by using a host language GOTO or equivalent statement. The
result of such a jump is undefined. Secondly, the NDML commands
SELECT, INSERT, DELETE and MODIFY should not appear within a
host-language "IF" statement because the Precompiler will not be
able to guarantee the integrity of the logic path. The NDML
statements listed below are provided to control the processing
of loops. (The NDML commands COMMIT, UNDO and ROLLBACK can also
be placed within a host-language IF statement).

3.8.4 NDML Loop Control Statements

(a) CONTINUE or NEXT
This statement causes the current iteration of the loop to

terminate and the next iteration to be generated. The NDML
statement CONTINUE should not be confused with the FORTRAN
statement.

(b) BREAK or EXIT
This statement causes the loop to be terminated and control

to be passed to the program statement following the end of the
loop.

3.8.5 Evaluation

The following actions are taken by the system to evaluate
an embedded NDML SELECT statement:

3-27

Iww
JA

PRN620141200
1 November 1985

1. The system evaluates the query and stores the resulting
rows in a result file. If a file name has been
specified by the programmer in an INTO phrase to
receive the results, the result file is given the
specified name and the command is finished. Otherwise,
proceed.

2. The code within the loop specified in the SELECT
command is executed, once for each row generated by the
query. Values are moved to the program variables or
structure fields specified to receive them. It is
necessary that the host language code either move those
values to safe storage or specify new variables (for
example, new indices of array variables) for each
execution of the loop if more than one row is returned.
The host language code should also test the number of
loops to ensure that the allocated storage for returned
information is not exceeded.

The following example illustrates how program variables
that receive information from a SELECT statement can be
manipulated in a loop construct (this and the following examples
are COBOL). Note that the braces should be on a separate line
without following code.

*4 SELECT :PART-NUMBER - P.PARTNO,
*41 :PART-NAME - P.NAME

'4 FROM PARTS P
*4

DISPLAY PART-NUMBER, PART-NAME
COMPUTE NUMBER-OF-PARTS -

NUMBER-OF-PARTS + 1.
*4)

The following example shows how a COBOL variable can be
used in the WHERE clause and how the CONTINUE statement can be
used. Parts with a null part name are skipped. Otherwise,
counters are incremented depending on the value of the work
number.

4 SELECT :PART-NAME - P.NAME, :WORK-NO - P.WORKNO
FROM PARTS P

'4 WHERE P.SIZE - 'SMALL'

'41 AND P.PARTTYPE - :PART-TYPE

3-28

PRM620141200
1 November 1985

IF PART-NAME - SPACES
*# CONTINUE

IF WORK-NO t BREAK-POINT
ADD 1 TO ODD-LOT-COUNT

ELSE
ADD I TO REGULAR-LOT COUNT.**

The following example shows the inclusion of a transaction
within a loop construct.

* * SELECT :PART-NAME = P. NAME, :PART-COLOR a P. COLOR
*4 FROM PARTS P

"4 BEGIN TRANSACTION;

** INSERT INTO COLORTABLE (CNANE OCOLOR)
*# VALUES (:PART-NAME :PART-COLOR);

IF NDNL-STATUS - 'ERROR'
* 4 ROLLBACK;

ELSE
* # COMMIT;

Other examples are shown in the Appendices A and B.

3-29

'V -

PRN620141200
1 November 1985

SECTION 4

NDML PROCESSING

4.1 IISS Precompiler Overview

The IISS Precompiler will precompile a user's application
process containing embedded NDNL commands. The Precompiler
parses the application program source code and identifies the
NDML commands. It will modify the original application process
to include numerous variables and subroutine calls necessary to
implement the NDNL commands in the host language. The
Precompiler will generate code (generated query processes) that
will be activated at run time to access the identified
internal-schema databases and to perform the required
internal-schema to conceptual-schema transforms. It will also
generate code (generated conceptual/external transformer) that
will be activated at run time to perform the required conceptual
to external transforms, statistics functions, ordering of
results, and other processes necessary to present the requested
results to the application process.

In order to execute the IISS Test Bed Precompiler, the user
must enter the IISS Test Bed System. After entering his
username, password and role he will then be shown the CHOOSE
FUNCTION form. The function name CDCDPREZZZ should be entered
to start the Precompiler. The next form shown will be the
PRECOMPILER INPUT form. The user should enter the application
process name, the target host of the application process, the
source file name and the source listing file. The Precompiler
will execute and the user will be returned to the CHOOSE
FUNCTION form. Following is an example of the forms and the
required responses to execute the IISS Test Bed Precompiler. At
end of precompilation, an error count message will appear at the
bottom of the function screen.

After precompilation is complete, leave UIMS and return to
VAX/VHS. Review the source listing file using $EDT, $TYPE or
SPRINT to check for errors and instructions concerning generated
code which must be compiled, linked, tested, and added to the
NTM tables and possibly transferred to a different host. Note
that the NTM requires that all file names be 8 characters;
consequently, names in the generated code will be padded with
the character Z to achieve the required length. At this
writing, a complete list of Precompiler-generated error
messages is not available.

4-1

PRK620141200
1 November 1985

Changes can be made to the original source code with an
editor if need be and the program precompiled again. The
Precompiler will automatically delete generated Application
Process name references from the data base. but will not delete
out of date versions of source code, objects and executable
images.

4.2 Example of Precompiling and Executing Application Process

Following is an example of precompiling and executing an
Application Process. The example vill be using Application
Process CDTS1. This is a COBOL Application Process; however,
the steps detailed below are the same whether the users
application Is a COBOL or FORTRAN program.

Step 1 - Execute the IISS Precompiler

Enter the IISS Test Bed System. After entering username,
password and role. the CHOOSE FUNCTION form will be displayed.
At this time CDCDPREZZZ is entered as the function to start the
Precompiler (see Figure 4-1). Figure 4-2 shows the responses
required to precompile Application Process CDTS1. The TARGET
HOST is the name of any valid host within the IISS system. The
SOURCE FILE is the file name for the source code before
precompilation and SOURCE LISTING FILE is the file name to
contain the source code after precompilation (these two file
names must be different). Figure 4-3 shows the corresponding
responses if CDTS1 were a FORTRAN Application Process. At the
completion of precompilation the CHOOSE FUNCTION form will be
displayed and at this time EXIT should be entered.

4-2

PRM620141200
1 November 1985

IISS TEST BED VERSION 1.0
--- --

DATE: / / TIME: USER ID: ROLE:

FUNCTION :CDCDPREZZZ

Figure 4-1. Execute Precompiler

4-3

PRM620141200
I November 1985

IISS TESTEED PRECONPILER

PLEASE ENTER THE FOLLOWING INFORMATION ABOUT THE APPLICATION
PROCESS TO BE PRECONPILED:

APPLICATION PROCESS NAME - CDTS1

TARGET HOST OF APPLICATION PROCESS - VAX

SOURCE FILE NAME - SNGTEST.PRC

SOURCE LISTING FILE - CDTS1.COB

Figure 4-2. Precompiler Application Process Responses
(COBOL)

4-4

PRM620141200
1 November 1985

IISS TESTEED PRECOMPILER

PLEASE ENTER THE FOLLOWING INFORMATION ABOUT THE APPLICATION
PROCESS TO BE PRECOMPILED:

APPLICATION PROCESS NAME - CDTS1

TARGET HOST OF APPLICATION PROCESS - VAX

SOURCE FILE NAME - SNUTEST. PRC

SOURCE LISTING FILE - CDTS1.FOR.

Figure 4-3. Precompiler Application Process Responses
(FORTRAN)

4-5

PR620141200
1 November 1985

Step 2 - Review the Precompiled Application Process Source
Listing File

Edit the source listing file, for this example CDTS1.COB,
and locate the text string "ERROR LISTING". Print the text
starting at this line until the end of the file. Figure 4-4
shows an example of the output for the CDTSI Application
Process.

File BOOO8.THP is the error listing file generated during
the precompilation of the Application Process. FILE
AOOO5ZZZ.COB is the generated Conceptual/External Transform
Program. File AOOO6ZZ.COB is the generated Request Processor.
There will always be one error file but could be many C/E
Transform Programs and Request Processors depending on the
number and complexity of the NDML queries in the Application
Process. The HOST column indicates the computer host where the
code must be transferred if different from the VAX. The TYPE
column indicates the type of generated application process,
either a conceptual/external transformer or a query processor.
The A*.COB and B*.TMP will be different for each run of the
Precompiler.

Step 3 - Review the Error Listing File

Review the error listing file using $EDT, $TYPE or SPRINT
to check for errors that might have occurred during the
precompilation of the Application Process. If errors have been
detected, change the original source code (SNGTEST.PRC) and
precompile the Application Process again starting at STEP 1,
otherwise continue with Step 4.

Step 4 - Compile the Precompiled Application Process and the
Generated Application Processes.

The precompiled Application Process and the NDNL programs
generated during the precompilation phase must be compiled in
order to create object files for each program. The programs
generated during the precompilation phase to implement NDNL
commands will be Conceptual/External Transformers and Request
Processors. The number of these NDNP programs will depend on
the complexity of the NDNL query in the original users

4-6

PRM620141200
1 November 1985

*ERROR LISTING IS B0008.TMP

*THE GENERATED APPLICATION PROCESSES FOR THIS PROGRAM ARE:

* FILE NAME HOST TYPE
* AOOO5ZZZ.COB VAX CONCEPTUAL/EXTERNAL TRANSFORMER
* AOOO6ZZZ.COB VAX ORACLE QUERY PROCESSOR

Figure 4-4. Example Output

4-7

PRM620141200
1 November 1985

application process. The following procedure files have been
provided to compile any program:

COMPANS - compile a COBOL program/subprogram

FORANS - compile a FORTRAN program/subprogram

The parameters for the compile procedure are as follows:

COMPANS P1
FORANS PI

where P1 - file name of the program

For this example three programs must be compiled as shown below:

$OGOMPANS CDTS1
SCOMPANS AOOO5ZZZ
$C ONPANS AOOO6ZZZ

Step 5 - Link the Precompiled Application Process and the
Generated NDML processes

The programs that were compiled in Step 4 must now be
linked in order to create an executable file for each program.
The link procedure file for the query processors will vary
depending on the data base manager that must be accessed in
order to satisfy the NDML query. The following procedure files
have been provided to link any programs/subprograms.

LNKAP - link a precompiled Application Process

LNKCE - link the Conceptual/External Transformer

LNKQERY - link an ORACLE Request Processor

LNKSUB - link a precompiled Application Process and
associated subprograms

The parameters for the link procedures are as follows:

LNKAP P1 P2
LNKCE P1 P2
LNKQERY P1 P2

where

4-8

PRM620141200
I November 1985

P1 - name of the program

P2 - link parameter (i.e. DEBUG, NODEBUG, NOMAP)

LNKSUB P1 P2 P3

where

P1 - name of the main program
P2 - name of the subprogram
P3 - link parameter (i.e. DEBUG, NODEBUG, NONAP)

For this example, three programs must be linked as shown below:

$@LNKAP CDTS1 NODEBUG
$@LNKQERY A0006 NODEBUG
$@LNKCE A0005 NODEBUG

NOTE: If the generated code must be transferred to another
host, one must first transfer the code and then perform Steps 4
and 5 on that host, using procedures to be determined. Other
link processors will be required for other dbms-host
combinations.

Step 6 - Add the Application Process to the NTH Tables

If this is the first time the Application Process has been
precompiled some NTH tables must be changed in order to reflect
the new Application Process and its generated NDML Processes.
The modification of these tables involves editing a table
initialization file to make the necessary changes. The
structure of the tables and an example of an initialization data
record is included in the IISS Test Bed Network Transaction
Manager Operator's Manual. The following NTH tables must be
modified when adding a new Application Process:

ACTTBL - Authority Check Table
APITBL - Application Process Information Table
APTTBL = Application Process Characteristics Table

Step 7 - Add the AP/ROLE Relation to the UI Data Base

If this is the first time the Application Process has been
precompiled, a row must be added to the AP/ROLE relation found
In the UI data base. This consists of executing ORACLE and
using the ORACLE UFI language to add the new AP/ROLE data.

4-9

P~ ~~~~~' A -'A--t'A'AA

PRM620141200

1 November 1985

Step 8 - Define the Application Process to the UIMS

If this is the first time the Application Process has been
precompiled, the Application Process must be defined to the
UIMS. Procedures to define the Application Process can be found
in the IISS User Interface Management System Services User
Manual.

Step 9 - Execute the Precompiled Application Process

Application Process, one must enter the IISS Test Bed
System as described in Step 1. At the CHOOSE FUNCTION form,
enter the name of the Application Process, in this case
CDCDTSIZZZ (see Figure 4-5). The Application Process will now
be executed. Application Process CDTS1 does not use the forms
interface for accepting inputs or displaying results; therefore,
when executing CDTS1, all prompts and results will be displayed
on the operators console. In order to receive these prompts and
results one must use the following VAX/VMS ASSIGN statement for
the operators console:

$ ASSIGN/GROUP _TTnn: SYS$COMMAND

where nn is the process number for the current terminal
determined by issuing the VAX/VMS SHOW PROCESS command.

NOTE: Steps 6-9 are used only for the precompiled Application
Process.

4-10

PRM620141200

1 November 1985

IISS TEST BED VERSION 1.0

DATE: / / TIME: : USER ID: ROLE:

FUNCTION: CDGDTSIZZZ

Figure 4-5. Execute Precompiled Application

4-11

PRM620141200
1 November 1985

4.3 COBOL Reserved Names and Labels

During the precompilation phase of IISS, code is generated
into the generated application process source code. For a COBOL
application process, code is generated in the File Control
Section, File Section, Working-Storage Section and Procedure
Division. Following is a list of reserved file names, variable
names and label statements for any COBOL application process
used in the IISS environment. These are legal COBOL variables
and statements but must not appear in the original application
process as user defined variables or labels.

(a) File Names

RESULT - nn

where nn depends on the nesting structure of the embedded
NDML query statements

(b) Variable Names

CDM-**
RES-**SS-**

NDML-STATUS
NDML-COUNT

where ** suffix added depending on the embedded NDML
query statements

(c) Label Statements

CDM-LOOP-nn
CDM-EXIT-nn
CDM-ESCAPE-nn

where nn depende on the nesting structure of the embedded
NDML query statements

4.4 FORTRAN Reserved Names and Labels

During the precompilation phase of IISS, code is generated I
into the original users application process source code. This
generated code consists of variable definition statements and
formatted input/output statements. Following is a list of
reserved variable names, CONTINUE statements, FORMAT statements
and logical unit numbers for any FORTRAN application process

4-12

/ 1

PRM620141200
1 November 1985

used in the IISS environment. These are legal FORTRAN variables
and statements but must not appear in the original application
process as user defined variables or labels.

(a) Variable Names

APHOST
CDCHAN
CDCSRT
CDDLEN
CDDTYP
CDMSNV
CDMSRC
CDMTYP
CDPTR
CDTVAL
CDWFLG
DECMAL
NTMSTA
NSTATS
NCOUNT

ACnnnn
CHnnnn
DInnnn
Fnnnnnn
MSGInn
MSGOnn
RSnnnn

where nn... depends on the nesting structure of
the embedded NDML query statements

(b) CONTINUE Statements

997nn - 999nn CONTINUE

where nn depends on the nesting structure of the embedded
NDML query statements

(c) FORMAT Label

996nn FORMAT

where nn depends on the nesting structure of the embedded
NDML query statements

4-13

PRM620141200
1 November 1985

(d) Logical Unit Numbers

The logical unit numbers for the result files will
be numbered starting at 99 and decrenented by one for each
NDML query statement.

4-14

PR4620141200
1 November 1985

APPENDIX A

BNF OF THE NDML

A.1 Conventions

Certain conventions are used to describe the form of

commands:

UPPER CASE WORDS denote keywords in the command

LOWER CASE WORDS denote user-defined words

{) denotes that exactly one of the options within the
braces must be selected by the user

or "]" denotes a literal brace character without
special meaning

[] denotes that the entry within the brackets is optional

I denotes an "or" relationship among the entries

denotes default option

The only punctuation allowed is:

(1) a "." to separate the table-label (.e., table alias)
from the column-name. The table-label is used to match a
column to a specific table in the list of tables
referenced in the FROM clause,

(2) a ":" before the name of a host-language program
variable, structure or file name that will receive
returned values,

(3) a "," between entries in the list of tables in a FROM
clause,

(4) a "," between subscripts to an array variable,

(5) a set of parentheses to enclose the column-list in an
INSERT statement,

(6) a set of parentheses to enclose the object column of a
function,

A-1

. % .. '1

PRM620141200
1 November 1985

(7) a set of parentheses to enclose the values to be
inserted in an INSERT statement,

(8) a set of parentheses to enclose a program variable
subscript list,

(9) a mandatory ";" or loop-construct at the end of the
command.

Only upper-case letters are recognized by the NDML
Precompi ler.

A.2 NDML Backus-Normal Form (BNF)

ndal-command ::-select-command I insert-command I
delete-command I modify-command I
begin-recoverable-unit-command I
commit-command I rollback-command

select-command - SELECT [lock-request]
(INTO external-struct] [DISTINCT]
([table-label] ALL I expr-list I

var-assgnmt-l ist)
FROM table-list
[WHERE predicate-list]
[ORDER BY order-spec-list]
{; I loop-construct)

insert-command ::- INSERT INTO table-name
(column-list)

VALUES (FROM external-struct
source-list);

delete-command ::- DELETE FROM table-name
[table-label]

[USING table-list]
WHERE (ALL I predicate-list);

modify-command ::- MODIFY table-name [table-label]
[USING table-list]
SET column-assgnmt-list
WHERE (ALL I predicate-list);

begin-recoverable
unit-command ::- BEGIN TRANSACTION;

A-2

PRM620141200
1 November 1985

commit-command :mCOMMIT;

rollback-command :-UNDO; I ROLLBACK;

bool-op I- m !' I),= I ' I

column-assgnmt-list :-column-assgnmt-spec I
coluun-assgnt-li1st
coluuan-assgnut-spec

column-assgnmt-spec :=column-spec -value

column-list :-column-spec Icolumn-list column-spec

column-predicate :-column-spec bool-op value I value
bool-op column-spec

column-spec -column-name I table-name.coluin-
name I table-label.column-name

digit .- 0111213141516171819

direction -ASC I DESC I ASCENDING I

DESCENDING I UP I DOWN

expr-list :-expr-spec I expr-list expr-spec

expr-spec :-column-spec I function([DISTINCTJ
column-spec)

external-struct :-FILE 'file-name' I
FILE ':variable-name' i
STRUCTURE :variable-name

function .:AVG I MEAN I MAX I MIN I SUM I COUNT

integer -digit Iinteger digit

join-op =:- I 1in

join-predicate :mcolumn-spec join-op column-spec

lock-request :-WITH (EXCLUSIVE I SHARED I NO] LOCK

loop-construct :: {statement-list")

A-3

PRH620141200
1 November 1985

number :-integer [.[integer]]

order-spec-list :-column-spec [direction] I
order-spec-list column-spec
[direction]

predicate-list :-predicate-spec I predicate-list AND
predicate-spec

predicate-spec :-column-predicate I join-predicate

quoted-variable :m'literal-string'

scalar-variable :-:variable-name [(subscript-list)]

source-list :-(value-list)

statement -host-language-statementI

ndml-command I BREAK I EXITI
CONTINUE I NEXT

statement-list :-statement I
statement-list statement

subscript-list :-integer I subscript-list , integer

table-list :-table-name [table-label] I table-
list, table-name [table-label]

value -scalar-variable I quoted-variable
number

value-list -value I value-list value

var-assgnmt-list :-var-asegnat-spec I
var-assgnmt-list var-assgnmt-spec

var-assgnmt-spec :-scalar-variable - expr-spec

A-4

PRM620141200
1 November 1985

APPENDIX B

COBOL EXAMPLE PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. VOMAPS.

S

PROGRAM NAME VOMAPS
*

* DESCRIPTION THIS ROUTINE ENFORCES THE FOLLOWING AUG
* TO SET MAPPING RULES:
* 1. AN AUC ALWAYS MAPS TO THE SAME DATABASE
* 2. THE AUC VALUE MUST BE UNIQUE.
* 3. THE SET OWNERS RECORD TYPES MUST BE
* BE IDENTICAL.
* IF NO RULES ARE BROKEN, THE RETURN CODE
* IS 1, OTHERWISE ZERO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

* DATA ORGANIZATION

WORKING-STORAGE SECTION.

* INCLUDE FILES

COPY SRVRET OF IISSCLIB.

B-1

PRM62014 1200
1 November 1985

*LOCAL VARIABLES

01 MODULE-MAME PIC X(6) VALUE "VOMAPS".
01 NESG-DESC PIC X(60).
01 RET-STATUS PIC X(5).
01 DE-NO PIC S9(9) COMP.
01 SET-NAME PIC X(30).
01 REC-NAKE PIC X(30).
01 AUC-VALUE PIC X(30).

*INTERFACES

LINKAGE SECTION.

*INPUT ARGUMENTS

01 IN-DE-NO PIC sq(9) COMP.
01 IN-SET-NAME PIC 1(30).
01 IN-OWNER-REC-NANE PIC X(30).
01 IN-TAG-NO PIC Sq(9) comp.
01 IN-AUC-VALUE PIC X(30).

*OUTPUT ARGUMENTS
01 OUT-CODE PIC S9(9) COMP.

*LIMITATIONS

*PROCESS DESCRIPTION
* PERFORM AN NDML SELECT TO OBTAIN INFORMATION ON
* PREVIOUS MAPPINGS FROM THE TAG NUMBER. FOR EACH
* ROW SELECTED, ENSURE THAT THE ABOVE 4 RULES ARE
* ENFORCED. IF NOT, GENERATE AN APPROPRIATE ERROR
* MESSAGE AND RETURN WITH OUT-CODE EQUAL ZERO,
* OTHERWISE OUT-CODE EQUALS ONE.

PROCEDURE DIVISION USING IN-DE-NO
IN-SET-NAME,
IN-OWNER-REC-NAME
IN-TAG-NO
IN-AUC-VALUE
OUT-CODE.

B-2

PRM620141200
1 November 1985

START-PROGRAM.
MOVE I TO OUT-CODE.

*4 SELECT :DB-NO - A.DBID,
*# :SET-NAME - A.SET ID,
*4 :REC-NAME - B.RT ID OF OWNER,
*4 :AUC-VALUE - A.AUC VALUE
*4 FROM AUC ST NAPPING A,
* 4 RECORD-SET B
*# WHERE A.TAG-NO - :IN-TAG-NO AND
"4 A.DB ID - B.DB ID AND

"4 A.SETID - B.SETID
*"4

* APPLY RULE I - THE DATABASE FROM THE SELECT

STATEMENT MUST MATCH THE USER ENTERED DATABASE
*

IF DB-NO NOT - IN-DB-NO
MOVE 0 TO OUT-CODE
MOVE "AUC MAY NOT BE MAPPED TO DIFFERENT DATABASES"

TO MESG-DESC
CALL "UERROR" USING MESG-DESC

*4 EXIT

*

* APPLY RULE 2 - THE AUC VALUE MUST BE UNIQUE
*

IF AUC-VALUE - IN-AUC-VALUE
MOVE 0 TO OUT-CODE
MOVE "THE FOLLOWING AUC VALUE IS NOT UNIQUE -

TO MESG-DESC
CALL "UERROR" USING MESG-DESC
MOVE IN-AUC-VALUE TO MESG-DESC
CALL "UERROR" USING MESG-DESC

*4 EXIT

* APPLY RULE 3 - THE SET OWNERS RECORD TYPES MUST MATCH

B-3

LM

PRM620141200

1 November 1985

IF REC-NAME NOT - IN-OWNER-REC-NANE
MOVE 0 TO OUT-CODE
MOVE "NON MATCHING SET OWNERS RECORD TYPES"

TO NESG-DESC
CALL "UERROR" USING MESG-DESC

4 EXIT

*

IF NOT OK
GO TO NDML-ERROR.

AFTER-LOOP.*

* RETURN
E

EXIT-PROGRAM.

EXIT PROGRAM.

NDML-ERROR.
MOVE NDML-STATUS TO RET-STATUS.
MOVE 'NDML ERROR TRAPPED' TO MESG-DESC.
PERFORM PROCESS-ERROR.
GO TO AFTER-LOOP.

*

* PROCESS ERROR

OPY ERRPRO OF IISSCLIB.
/

B-4

PRM620141200
1 November 1985

APPENDIX C

FORTRAN EXAMPLE PROGRAM

PROGRAM CDTS8
C
C APPLICATION PROCESS CDTS8
C
C AN EXAMPLE OF AN APPLICATION PROCESS
C CONTAINING A NESTED NDML QUERY.
C

CHARACTER ECNAME*3OAUCNAM*30
CHARACTER VI*30,V4*30
INTEGER V5,V6,V8
INTEGER V2,V3,V7,NTMBSZ
DATA NTMBSZ /4096/
CHARACTER NTMBUF*4096,TERMID*2,NTMSTS*l,RETCOD*5

C

C
c

CALL INITAL (%REF(NTMBUF),
* %REF(NTMBSZ),
* %REF(SYSSTS),
* %REF(RETCOD))

IF (RETCOD .NE. '00000') THEN
PRINT *,'BAD INITAL'
CALL TRMNAT (%REF(NTMSTS))

ENDIF
100 CONTINUE

PRINT *, 'ENTER ENTITY CLASS LABEL'
READ (UNIT-5,FMT-200) ECNAME

200 FORMAT (A20)
IF (ECNAME .EQ. 'EXIT') GO TO 900

C
C# SELECT :V1 - R.EC LABEL :V2 - R.EC NO
C# :V3 - R.DEP EC NO :V4 - R.RCLABEL
C* FROM RELATION XREF R
C# WHERE R.ECLABEL - :ECNAME
C {

PRINT *,'ENTITY CLASS LABEL :',VI
PRINT *,'ENTITY CLASS NUMBER :',V2
PRINT *,'DEPENDENT ENTITY CLASS :',V3
PRINT *,'RELATION CLASS LABEL :',V4
PRINT *,'

C-1

PRM620141200
1 November 1985

C* SELECT :Vl - I.EC LABEL :V2 - I.EC NO
Cs :V5 - I.TAG NO :V6 - I.TAGINHER
C# :VV - I.INDEC NO
C* FROM IAUCXREF I
C* WHERE I.IND EC NO - :V2
C# AND I.EC_NO - -:V3
C. AND I.RCLABEL - :V4
CR

PRINT *, DEPENDENT ENTITY CLASS LABEL:' ,V2
PRINT *' DEPENDENT ENTITY CLASS NUMBER :', V2
PRINT S, ATTRIBUTE USE CLASS NUMBER :',V5
PRINT *, INHERITED FROM AUC NUMBER :' ,V6
PRINT *, INHERITED FROM EC NUMBER :',V7
PRINT S'

C*
Cs)

GO TO 100
C

900 CONTINUE
CALL TRMNAT (%REF(NTMSTS))
END

C-2

PRM620141200
I November 1985

APPENDIX D

REFERENCES

Related ICAM Documents included:

UM62014100 CDM Administrator's Manual

TBM620141000 CDM1, An IDEFI Model of the Common Data Model

UM620141002 Information Modeling Manual - IDEFI-Extended
C IDEFiX)

UM620141100 Neutral Data Definition Languae (NDDL) User's
Guide

DS620141200 Development Specification for the IISS NDML
Precompiler Configuration Item

DS620141320 Development Specification for the IISS
Aggregator Configuration Item

DS620141310 Development Specification for the IISS
Distributed Request Supervisor Conf iuration
Item

D-1
U % -. .. em |ltmtl I)fl!, e 1 81 il i

I

